Spatial transcriptomics stands at the forefront of scientific innovation, empowering researchers to delve into intricate gene expression patterns within tissues while preserving their spatial context. Amidst various platforms, BMKGene has developed the BMKManu S1000 Spatial Transcriptome Chip, boasting an enhanced resolution of 5µM, reaching the subcellular range, and enabling multi-level resolution settings. The S1000 chip, featuring approximately 2 million spots, employs microwells layered with beads loaded with spatially barcoded capture probes. A cDNA library, enriched with spatial barcodes, is prepared from the S1000 chip and subsequently sequenced on the Illumina NovaSeq platform. The combination of spatially barcoded samples and UMIs ensures the accuracy and specificity of the data generated. The BMKManu S1000 chip’s unique attribute lies in its versatility, offering multi-level resolution settings that can be finely tuned to different tissues and levels of detail. This adaptability positions the chip as an outstanding choice for diverse spatial transcriptomics studies, ensuring precise spatial clustering with minimal noise.
Using the BMKManu S1000 chip and other spatial transcriptomics technologies, researchers can gain a better understanding of the spatial organization of cells and the complex molecular interactions that occur within tissues, providing invaluable insights into the mechanisms underlying biological processes in a wide range of fields, including oncology, neuroscience, developmental biology, immunology and botanical studies.
Platform: BMKManu S1000 chip and Illumina NovaSeq